Transcriptional response of lymphoblastoid cells to ionizing radiation.

نویسندگان

  • Kuang-Yu Jen
  • Vivian G Cheung
چکیده

The effects of ionizing radiation (IR) on the temporal transcriptional response of lymphoblastoid cells were investigated in this study. We used oligonucleotide microarrays to assess mRNA levels of genes in lymphoblastoid cells at various time points within 24 h following gamma-irradiation. We identified 319 and 816 IR-responsive genes following 3 Gy and 10 Gy of IR exposure, respectively, with 126 genes in common between the two doses. A high percentage of IR-responsive genes are involved in the control of cell cycle, cell death, DNA repair, DNA metabolism, and RNA processing. We determined the temporal expression profiles of the IR-responsive genes and assessed effects of IR dose on this temporal pattern of expression. By combining dose-response data with temporal profiles of expression, we have identified sets of coordinately responding genes. Through a genomic approach, we characterized a set of genes that are implicated in cellular adaptation to IR stress. These findings will allow a better understanding of complex processes such as radiation-induced carcinogenesis and the development of biomarkers for radiation exposure.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantitation of genome damage and transcriptional profile of DNA damage response genes in human peripheral blood mononuclear cells exposed in vitro to low doses of neutron radiation

Background: Humans are exposed to ionizing radiation from different sources that include natural, occupational, medical, accidental exposures. Evaluation of the effect of low level of neutron exposure to human cells in vitro has important implications to human health. Attempts were made to measure genome damage, transcriptional profile of DNA damage response and repair genes in peripheral blood...

متن کامل

Cellular response to ionizing radiation: A microRNA story

MicroRNAs (miRNAs) represent a class of small non-coding RNA molecules that regulate gene expression at the post-transcriptional level. They play a crucial role in diverse cellular pathways. Ionizing radiation (IR) is one of the most important treatment protocols for patients that suffer from cancer and affects directly or indirectly cellular integration. Recently it has been discovered that mi...

متن کامل

Dose-dependent expression changes of early response genes to ionizing radiation in human lymphoblastoid cells.

The sensitivity of cancer cells as well as normal cells in response to ionizing radiation (IR) is believed to be associated with the early inducible expression of specific genes. Using cDNA microarray technology, here we explored and compared the global transcriptional changes in human lymphoblastoid AHH-1 cells irradiated with 0.05-, 0.2-, 0.5-, 2.0- and 10-Gy doses of gamma-rays 4 h after exp...

متن کامل

Nijmegen breakage syndrome cells fail to induce the p53-mediated DNA damage response following exposure to ionizing radiation.

The functionality of the p53-mediated pathway, activated in response to DNA damage, has been assessed in primary fibroblast cell cultures and Epstein-Barr virus-transformed lymphoblastoid cell lines derived from Nijmegen breakage syndrome (NBS) patients. This autosomal recessive disease is characterized by microcephaly, growth and mental retardation, chromosomal instability, radiosensitivity, a...

متن کامل

Chemical induction of the bystander effect in normal human lymphoblastoid cells.

Many studies investigating the bystander effect have used ionizing radiation to evaluate this phenomenon, whereas very few have determined whether genotoxic chemicals are also capable of inducing this effect. Here, we show that two such chemicals, mitomycin C, a bifunctional alkylating agent and phleomycin, a glycopeptide antibiotic of the bleomycin family, cause normal human B lymphoblastoid c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Genome research

دوره 13 9  شماره 

صفحات  -

تاریخ انتشار 2003